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1. INTRODUCTION

Cellular automata and interacting particle systems have much in common.
Usually they act on regular grids like Zd, use 0, 1 states, and the transition
mechanism concerns the change of the state at a single site, depending on
the states of sites in a neighborhood. Generally the mathematical investi-
gation of these systems follows different lines, in cellular automata the
dynamical systems view and combinatorial aspects dominate, interacting
particle systems are stochastic processes. The theory of interacting particle
systems has been established in a very general framework,(12) classes of
examples where detailed information can be obtained are far more spe-
cial(5, 6, 2, 13)

Cellular automata can be used to model various local reactions
between "species" but it is difficult to model directly spatial effects like
migration or diffusion. Therefore in ref. 14 a class of "dimer automata" has
been introduced in which, in contrast to classical cellular automata, the
states of two neighboring sites are changed such that the new states depend
only on the previous states at these two sites. There are some examples of
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interacting particle systems where the states of two sites are interchanged
or changed at the same time such as the exclusion process(12) and anni-
hilating processes.(7) For two elementary states 0, 1 there are 256 dimer
automata. In ref. 14 these were enumerated (following the enumeration of
Wolfram(15) for cellular automata), their equivalence classes under a group
of elementary transformations were determined and the asymptotic behavior
explored by mean field approximations and computer simulations.

In ref. 2 it was observed that the concept of a dimer automaton,
originally designed for Z with a three-site neighborhood, can be carried
over to arbitrary graphs: an edge of the graph is called at random, and
new states are attributed to the two adjacent vertices according to a deter-
ministic function. These processes were called "edge processes." Many
features of such systems, as for instance the existence of a dual (see Sec-
tion 3) or of a stationary product measure (see Section 5), do not strongly
depend on the graph but only on the local rule.

Here we generalize the concept of an edge process in such a way that,
once an edge is called, new states are selected for the two adjacent vertices
according to some random distribution with the previous two states at
these sites as parameters. Our motivation to study such processes comes on
one hand from quasiperiodic and random tilings, which are used as models
of quasicrystals and more disordered materials,(1,11) and on the other hand
from modelling in the biological and social sciences where quite irregular
graphs are used to describe relations between individuals or groups, and
where particle systems are likely to be more frequently applied in the near
future.(8)

Thus transition rates will be defined for the edges of the graph, and the
states at the two vertices of an edge may change simultaneously. Our class
of edge processes includes many well-known spin systems with linear rates,
the deterministic dimer automata as well as the exclusion process.
Nevertheless, this class is sufficiently small to be studied as a whole. For
our case of two elementary states 0, 1 and undirected graphs, it can be
parametrized by points in a six-dimensional simplex.

This parametrization appears natural: to a certain extent, properties of
the processes can be described using the geometry of the parameter set; the
properties of a convex combination reflect those of its constituents. Several
interesting subclasses correspond to convex subsets of the parameter sim-
plex and it seems possible to investigate two- and three-parameter families
of processes in a similar way as this is done for chaotic dynamical systems.
In particular we show that only additive edge processes(10) have a dual, and
we perform a mean-field calculation to find stationary distributions. For a
subset of codimension 1, it can be rigorously proved that a stationary
product measure exists.
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2. EDGE PROCESSES

Our approach is implicitly contained in classical work of Harris (9 ,10)

(cf. Durett (5)), and formulated in cellular automata language in ref. 14.

Definition. An edge process is given by

1. a finite set F of elementary states,

2. a directed graph G = (V, E) with countably many vertices and the
additional property that no edge connects a vertex to itself and that at each
vertex there are only finitely many ingoing or outgoing edges,

3. a map Q:F2xF2 - [0 , oo).

The vertices of the graph can be seen as sites and the edges as defining a
neighborhood structure for these sites. The classical example is V = Zd with
the Moore or the von Neumann neighborhood structure. The elementary
states can be seen as colors, their number will be denoted by m. In the
simplest case we have F= {0, 1} or the colors white and black. The con-
figuration space is Fv = (c: V -> F}. Thus a configuration associates a
color to each site. The state of the site itself is £(x). The map Q is a matrix
Q(u, v) with m2 rows and columns.

The edge process works as follows. At an event a directed edge (rather
than a site) is selected, the states u1 at the outgoing site and u2 at the ingo-
ing site are inspected, collected into the ordered pair u = ( u 1 , u2) and two
new values v = ( v 1 , v2) are attributed to these sites. The rates Q(u, v) define
when and how these events take place. Thus an edge with states u has
exponentially distributed holding time with respect to a change into v with
parameter A = Q(u, v) unless another event changes either u1 or u2, i.e.,
u into u' from whereon the parameter is Q(u', v}. To avoid unnecessary
changes from u to u, we assume Q(u, u) = 0 for all u.

Before we introduce other descriptions of the transition mechanism,
we briefly recall the concept of equality of processes. Two particle systems
are equal (in distribution) if they behave in the same way. This means that
for each fixed initial configuration, the distribution of the configuration at
any time / (and also the joint distribution at times t1,..., tn) is the same for
both systems. In the following two edge processes will also be considered
to be equivalent if one is obtained from the other by a uniform time change
with a factor r. That is, the distribution of ( c ( t 1 ) , . . . , E ( t n ) ) for the first
process agrees with the distribution of (E(rt1), . . . , £ ( r t n ) ) for the second, for
every choice of t1,..., tn. In other words, two matrices Q, Q' will describe
the same process if Q = rQ'. Thus we shall assume throughout that

E u , v e F ' Q ( u , v ) = 1.
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2.1. Transitions Simplified

So far we assumed that each transition u —> v is performed with rate
Q(u, v). With the above convention on Q, we now reformulate the transi-
tion mechanism so that the Q(u, v) appear as transition probabilities for
pairs of states. Each edge e is called with rate 1, and if the states at the two
sites of e are given by u, they are changed to the new pair of states v with
probability Q(u, v). (Thus even if the edge is called, there will be no change
with probability 1 — E { v \ v = u } Q(u,v).) A standard argument concerning
thinning of Poisson processes shows that this mechanism agrees with the
previous one (cf. ref. 6).

For finite graphs G, the long-time behaviour of the process is not
changed if we work with discrete time, choosing at each step one of the
edges with respect to the equidistribution on E and applying Q as above.
This modified edge process is in fact an ordinary Markov chain.

2.2. Comparison with Spin Systems

Some edge processes can be interpreted as particle systems with flip
rates c,(x, £) for the change £ , (x} \—»i at single sites x. The necessary and
sufficient condition for Q is Q(u, v) = 0 whenever u1 = v1 and u 2 = v 2 . When
this condition is fulfilled, c i ( x , £,) can be calculated as a sum which depends
linearly on the numbers kj (x, £,) and kj(x, £,} of neighbours of x with state
j via outgoing and incoming edges, respectively. Conversely, if a particle
system is given by flip rates c i ( x , £) = EjeF

 a
iljk j+b i l jk j for £(x) = l=i

where ailj, bilj are nonnegative numbers, it can be represented as an edge
process. (The proof given in Proposition 2.2 below easily extends to the
general case.)

Thus the local rules in our approach are rather special. On the other
hand, edge processes include most of the familiar examples in refs. 5, 6, 12,
and 13 as for instance voter models, contact processes, and exclusion pro-
cesses. Moreover, our approach is general in the sense that it applies to
arbitrary directed graphs G, not only to regular lattices as Zd. Even for
V = Zd, edges can be chosen to define different types of neighbourhoods
(Moore and von Neumann nearest-neighbour, long-range, or asymmetric
neighbourhoods for asymmetric exclusion processes). It seems an advan-
tage of our definition that transition mechanism Q and graph structure are
separated.

2.3. The Family of Edge Processes

Initially we have introduced edge processes by their rates Q(u, v). Thus
the family of edge processes is parametrized by the nonnegative matrices
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This normalization excludes the trivial process. Whenever we need not
specify the underlying graph, we shall describe the process by the matrix.

An edge process is called deterministic if there is c > 0 such that all
Q(u, v) are either zero or r, and for each ueF2 there is at most one v with
Q(u,v) = c. The constant c is determined by (*). For m = 2 we have the 256
deterministic edge processes (including the trivial process) studied in ref. 14.
The normalization (*) determines a simplex &. Its vertices are the matrices
with (*) which have exactly one element equal to 1. These m4 — m2

matrices (12 for m = 2) are deterministic processes. They can be con-
veniently described by their unique nontrivial transition u-»v (cf. Table 1).
The simplex ,¥ is the convex hull of these deterministic processes.

The description of edge processes by a convex compact parameter set
which is the convex hull of deterministic processes is not only formal. If an
edge process is a convex combination of certain deterministic processes
(in the parameter space) then one can interpret the action as calling the
actions of the deterministic edge processes according to the probability
distribution given by the convex combination.

2.4. Undirected Graphs

In the following we concentrate on F={0, 1}, and we study only
undirected graphs, that is, directed graphs such that (x, y) is an edge if and

Q = ( Q ( u , v ) ) of order m2. The zero matrix is the trivial process which
changes nothing. Then we have, without lack of generality, assumed
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Table 1. The Extreme Points of F for
Undirected Graphs

Name

A
B
C
D
E
T
G

Description

Annihilation
spontaneous Birth
Coalescence
Dying out
Exclusion process
spontaneous Twin birth
Richardson Growth model

Rule

11 i-»00
00 i->01
11 i-»01
01 i->00
01 -> 10

00 -> 11
01 -» 11



only if (y, x) is an edge. An undirected edge {x, y} is defined as the union
of the directed edges (x, y) and (y, x), and the selection of directed edges
works as above. For regular graphs of degree k, the selection of (x, y) can
also be described as follows(5,6): first x is chosen, applying an exponentially
distributed holding time to each point, and then one of the k neighbours
is selected using probabilities 1 /k. On undirected graphs, the two processes
10->v1,v2 and 01 ->v2v1 are equal. Moreover, the processes 1 1 - > 10 and
11-»01 coincide: If {x, y} is an edge and £(x) = E ( y ) = 1, both processes
transform E to E' with E'(x) = 0, £ ' ( y ) = 1 with rate I, and to £" with
£"(x) = 1, £"(y) = 0 with the same rate. The same holds for 00-> 10 and
00 —>01. Thus the number of extreme points of & will decrease from 12
to 7 for undirected graphs and these are the 7 rules given in Table 1. Since
an edge is a pair of directed edges, the processes A, B, C, and T act with
rate 2. Thus we have shown the following result.

Proposition 2.1. The space & of all edge processes for F= {0, 1}
and undirected graphs is the 6-dimensional simplex generated by the seven
deterministic processes listed in Table 1.

In other words, the transition matrix Q of an edge process has a
representation Q = aA +bB + cC + dD + eE+ tT+ gG with non-negative
numbers fulfilling a + b + c + d+e + t + g=1. The terminology in Table 1
uses the interpretation of state 0 as "empty" or "dead" site and 1 as
"occupied" or "living." Then the configuration £ can be identified with the
set {x | £(x)= 1}, and ( £ t ) t > 0 can be considered as a set-valued Markov
process.(9, 10, 12) An important subclass of processes is given by the condi-
tion that "nothing can develop from 0" which we call "legal" processes
(following a similar definition of Wolfram(15) for cellular automata). This
subclass excludes B and T and is thus represented by the 4-dimensional
subsimplex of .F with vertices A, C, D, E, and G. An interacting particle
system over {0, 1} is called a spin system(5,12) if only one site can change
at a time. This excludes A, E, and T.

Proposition 2.2. A spin system can be represented as an edge pro-
cess if and only if the flip rates at a site x depend linearly on the number
kj = kj(x, £) of neighbours which have state j. All linear spin systems form
a 3-dimensional subsimplex of & with vertices B, C, D, and G.

Proof. For £(x) =0, the change 0-> 1 will occur with rate c1(x, £) =
bk 0 +gk 1 . For £(x)= 1, the state of x flips with rate c 0 ( x , £ ) = dk0 + ck1.
Clearly, all positive linear functions c0 and c1 can be realized by suitable
choice of b, c, d, g. |
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Here R = £0 denotes the starting configuration of £t and equality should
hold for appropriate realizations of all processes £t, R^ V. Harris proved
that an edge process is additive if it is given by a 2 x 2-matrix M in the
following way: if the edge (x, y) is called then (£(x ), £ ( y ) ) is replaced by
( £ ' ( x ) , £ ' ( y ) = (£(x), £(y)) M. Matrix multiplication is as usual, with the
exception (1, l ) ( 1 ) = 1. Table 2 lists all these edge processes. Harris proved
that the additive edge processes coincide with the convex hull of these matrix
processes. Since the first five processes in Table 2 are extreme points of the
convex hull, and the last two are not, this implies the following statement.

Proposition 3.1. The additive edge processes, considered as subset
of J, form the polyhedron with vertices D', D", E, G, V, W.

3.2. Duality

Harris introduced additive processes to prove the existence of duals.
The set-valued process (n t ) t > 0 is called a dual of ( £ t ) t > 0 if for all sites of
sites R, S s V and all t > 0

for all t > 0 and all sets R, S s V

3. ADDITIVE PROCESSES AND DUALITY

3.1. Additive Processes

Harris(10) introduced the important class of additive particle systems
by requiring that
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Table 2. Additive Edge Processes and Their Matrices

Shorthand

D' = (C+D)/2

D" = ( A + 2 D ) / 3

E

G

v = ( D + G)/2

W=(C + E)/2

(C + D + E ) / 3

(E + G)/2

Description Generating matrices

spin system I —>0

fast extinction

exclusion process

growth model

voter model

coalescing random walk

(not extreme I

(not extreme )

I 1 0\l» 0\
( 0 0 ^ 0 ] '

1° °)to o '
01
1 o'

, 1 0 1 1, 1 1,
M l M o 1 M i 1 1

( 1 K / 0 U ]

t o O ' M i )
, 1 0 , 1 )
1 0 0 1

,0 1 00
0 0 1 0

1 1 0 1
1 0 1 1
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Duality is a very important concept for the study of particle systems.(5,6,12)

Putting R = 0, we see that only legal processes can have duals. Harris
proved that an additive process has a dual, given by the transpose of the
matrices.(10) He gave a simple example of an edge process on a directed
graph which has a dual and is not additive. We show that this cannot
happen for undirected graphs.

Theorem 3.2. Let (£ t ) be a legal edge process with parameters a,
c, d, e, g > 0, acting on an undirected graph G with at least one edge. Then
the following conditions are equivalent.

(i) (£ t) is additive

(ii) (£ t) has a dual

(iii) The following inequalities hold:

Proof. Harris proved that (i) implies (ii), we show that ( i i) implies
(iii). Take an edge {x, y} from G and suppose that there are k edges from
x to other points and / edges from y, including {x, y}. All our starting
configurations will fulfil £0(z) = 0 for z<£{x, y}, and only small t will be
studied.

If £0= {x} then a first change can occur only at one of the k directed
edges (z, x) with z = x , more precisely,

and similarly for nt. It follows that a = a'.

Any dual process (nt) is necessarily legal, as shown above, and thus is given
by parameters a', c', d', e', g', and P[nt

{x} n {x} =0] =k(d' + e') t + o(t).
Now apply the definition of duality with R = S = {x} to find d + e = d' + e'.

Next apply a similar argument to R= {x}, S= {y},

to get e + g = e' + g'. Then take R = S={x, y},
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Finally, choose R = {x} and S= {x, y},

Using d + e = d' + e' we find d = 2a' + c'. Interchanging R and S we get
d' = 2a + c. So far we have shown

Proposition 3.3. If the legal edge process (£,) has a dual ( n t ) , then
the parameters a', c', d', e', g' of (nt) are uniquely determined by the
conditions

Proposit ion 3.4.  In the parameter space a,  c ,  d,  e ,  g>0,
a + c + d + e+g=1 the inequalities (iii) define a convex polyhedron <g
with the following structure. t0 = $ o {d=2a + c} is a 3-simplex with ver-
tices D', D", E, G. The set t+ = % n {d> 2a + c} is a 4-simplex spanned by
t0 and V, and t_ = tn {d< 2a + c} is a 4-simplex spanned by t0 and W.

The transition 3.3 from (£t) to (nt) carries t+ into t_ and vice versa,
and leaves t0 invariant. In particular V and W are dual processes, and t0

is the set of self-dual processes.

Fig. 1. Classes of edge processes and their extreme points.
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Proof of Proposition 3.4. The legal edge processes form a 4-simplex
$ = {a, c, d, e, g>0, a + c + d + e + g = 1 } in R5, with vertices A =
(1,0,0,0,0), C,D,E,G = (0,0,0, 0 ,1) .

We first assume d = 2a + c. Then the inequalities (iii) are satisfied so
that t0 = tn{d = 2a + c}. We have a, c, e, g>0 and 3a + 2c + e + g=1
so that we can calculate the extreme points by setting 3a = 1; 2c = 1; e = 1
and g = 1, obtaining D' = (1/3, 0, 2/3, 0, 0), D" = (0, 1/2, 1/2, 0, 0), E and G,
respectively. Moreover, by 3.3, d = 2a + c is equivalent to d = d' and implies
(Et) = (nt) so that t0 really contains the self-dual processes.

Next, we consider t+ = £n {d>2a + c}. Put S = d-2a-c. Then
a, c, e, g, s > 0, 3a + 2c + e + g +s =l, and (iii) reduces to the condition
S = g. As before, the extreme points D', D", E, G of t+ are found by
putting 3a = 1 etc. Instead of S = 1 we obtain 6 = g = 1/2 which in old coor-
dinates is V= (0, 0, 1/2, 0, 1/2).

For t_ =tn {d<2a + c] we put a = d—2a and i = 2a + c — d so
that a, e, g , ( r , T > 0 and 3a + e + g + 2a + T= 1. The condition (iii) reduces
to T < e . As before, the only new vertex corresponds to T — e= 1/2, that is,
W=(0, 1/2, 0, 1/2, 0) in old coordinates. The remaining part of 3.4 follows
from 3.3. |

Figures 2 and 3 show the intersection of f (dotted lines) and t with
the hyperplanes a = 0 and a =1/6. The partition t = t+ u t u t_ is
visible. Proposition 3.3 says that the duality transformation £ ( t ) - > n ( t ) is
represented in parameter space by the affine reflection f at the hyperplane

Fig. 2. Legal, additive, dual and self-dual processes for a = 0.
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Fig. 3. Legal, additive, dual and self-dual processes for u= 1/6.

{d = 2a + c} with f ( K ) = W. The proof of Theorem 3.2 implies that # =
t n f ( t ) which is also indicated by the figures. Moreover, Fig. 3 shows
that for larger a we have less processes with dual; for a= 1/3, the only
remaining process with dual is D", the bottom vertex of the corresponding
tetrahedron.—The legal linear spin systems form a 2-simplex with vertices
C, D, G which appears as left front face in Fig. 2. The linear spin systems
with dual form the 2-subsimplex spanned by D', G, V. The self-dual pro-
cesses among them form a 1-simplex spanned by D', G. These are well-
known as contact processes.(5,9,12)

4. MEAN-FIELD APPROXIMATION

Stationary distributions on the configuration space play a central role
in the theory of particle systems. In particular, one wants to know whether
the system is ergodic, i.e., whether it converges to a unique stationary
distribution for any initial configuration.

We may assume that the graph G is connected.
For finite G, we can ask whether the Markov chain with state space

{0, 1}V is irreducible and non-periodic. This question is not difficult to
answer but quite a number of particular cases have to be considered.(2)

Here we confine ourselves to cases where a, b, c, d > 0 so that each con-
figuration can be transformed into any other one with positive probability.
Moreover, the presence of a 2-cycle 001—> 011—> 00 and a 3-cycle 001—»111—>
011—»00 shows that the Markov chain is non-periodic.



Proposition 4.1. On a finite connected graph, all edge processes
with a, b, c, d > 0 represent irreducible and non-periodic Markov chains. In
particular, all processes in the interior of the simplex F of Proposition 2.1
are ergodic.

In the case of infinite graphs, even for graphs with a simple structure,
the problem is much harder(13) It is possible to identify processes which are
trivially ergodic in the sense that the all-zero configuration defines the only
stationary distribution. However, a given process may die out on one
graph G and survive on the other. Even for G = Z there are open problems.
For example, the exact critical value s* of the one-dimensional contact pro-
cess (1 — s) D' + s . G is still unknown.(12,13) Moreover, recent results on the
contact process on homogeneous trees show that a process may die out on
each fixed finite subset of V and may still survive globally on V.(13) Finally,
if a process is not trivially ergodic, it is not easy to determine the stationary
distributions and their domains of attraction.

Mean-field approximation is an attempt to find stationary distribu-
tions of an edge process, or at least an asymptotic density p1 of 1's, without
reference to the underlying graph G. This method is not rigorous: we make
the very restrictive assumption that there is a stationary distribution of the
edge process which is a product measure u = { p 0 , p 1 } v on the configura-
tion space {0, 1}v. Under this assumption we shall determine p1 uniquely
and show that u is stable under perturbations within the set of product
measures.

The assumption approximately holds for a complete graph with many
vertices (|V| -»oo), for hydrodynamic limits with "rapid stirring(4,6) (in
our context this means processes with e = 1 on large graphs G), and for
long-range interactions (ref. 6, Chapter 7). We show in the next section
that for many edge processes there are indeed stationary product measures
for the action on arbitrary graphs. In any case, the mean-field calculation
gives a first approximation. For the deterministic case, the coincidence with
numerical simulations is remarkable, with few exceptions(14)

We write p 1 = p and p0 = 1 — p. Then the mean field assumption says
that an edge is marked 00 with probability (1 -p)2 and 11 withp2. In the
steady state, the rate of change of p1 is zero:
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Notice that the parameter e enters implicitly as e = 1 — a — b — c — d— g — t.
Define the quadratic function



A value p with f(p) = 0 indicates a stationary distribution and the sign of
f ' (p) indicates its stability (see below).

Proposition 4.2. Except for the voter model combined with an
exclusion process, the mean-field approximation always yields a unique
stable probability p1 = p*. Moreover, 0 <p* < 1 except for the growing and
terminating processes described below.

Proof .  Observe f (0)  = b + 2/5*0 and f (1)  = -c-2a <0.

Case 1. f(0) >0, f ( l ) < 0 . Since / has at most two zeros, there is
exactly one zero p* e(0, 1), and f ' ( p ) <0. For 0 <p1<p* we have f(p) >0
so that in the average, new 1's are created, while for p *<p 1 < 1 we have
f ( p ) < 0 so that 1's are removed.

Case 2. f(0) = 0 (i.e., the process is legal) and f ( l ) < 0 . Then con-
sider f'(0) = g-d. If g>d then f ' (0 )>0 implies again that there is a
unique p * e ( 0 , 1), f '(p*) <0, which is stable, attracting all p1=0. If g < d ,
then p * = 0 is the only root, and f ( p ) < 0 for 0 < p < 1. Such processes will
be called terminating.

Case 3. f (1) = 0, f (0)>0. Then f ' ( 1 ) = d-g. For g<d there is a
unique p*e(0, 1), p* is stable. For g>d we have p* = 1, f ( p ) > 0 for
0<p< 1. Such processes will be called growing.

Case 4. f(0) = f ( 1 ) = 0. Then b = t = c = a = 0, f(p) = p(1 -p(g-d).
The process is a linear combination of D, E, G. Thus the process is a biased
voter model(5,6) combined with an exclusion process. For g>d the process
is growing, p* = 1 is stable. For g<d, p* = 0 is stable, and the process is
terminating. The singular case g — d, f(p) = 0 represents the basic voter
model, combined with an exclusion process. For this case it is known that
on certain graphs, both p* =0 and p* = 1 may be the result of the process
while on other graphs like Z3, there are steady states with arbitrary p1 . ( 5 , 1 2 )

The mean field density has itself some convexity property.

Proposition 4.3. Let Q and Q be edge processes with mean-field
probabilities p* and p*, and let Q = sQ + (1 —s) Q be a convex combina-
tion. Then p* lies between p* and p*.

Proof. The quadratic function f ( p ) is also a convex combination
f(p) = sf(p) + ( 1 - s ) f(p). If p * < p * , both f(p) and f(p) are positive for
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p<p*, and negative f o r p > p * . If 0<s< 1, p* = p * , and f,f are not identi-
cally zero, p* is strictly between p* and p*. |

5. PRODUCT MEASURES

Now we show that quite a number of edge processes have invariant
product measures for their action on arbitrary graphs. We consider the con-
tinuous time Markov chain which corresponds to the action on a single
edge. There are three states U = 00, W=01 (including 0) and Z= 11. The
transition rates are puw = 2b, puz = 2t, pwu = d, pwz=g, pzu = 2a,
pzw=2c. For each edge process, there is a unique stationary distribution
( u , w , z ) determined by

For given .x1eV\{x, y} and v i e { 0 , 1}, however, these cylinder sets are
transformed into each other in the same manner as vx and vy. Since
u ( C ) = yB with y depending on the vi and B = p2, (1 — p)2, p ( 1 — p ) for
(vx, vy) = 11, 00, 01, and 10, respectively, the above equations show that
the flow between the cylinders preserves the values u ( C ) . |

Let us reformulate the result. In (5.1) the second equation follows from
the first and the third. Using u = (1 — p)2, w = 2p( 1 — p), z = p2 we find

Proposition 5.2. The product measure u = {1 — p, p}v is station-
ary for the process with parameters a, b, c, d, e, t, g if and only if

Proposition 5.1. If there is a p e[0, 1] such that the above equa-
tions are fulfilled with u = (1— p}2, w = 2 p ( 1 — p ) and z = p2, then the
product measure u — {1 — p, p}v on the configuration space {0, 1}V is a
stationary distribution for the given edge process on an arbitrary graph
G = (V,E).

Proof. It suffices to show that for any fixed edge {x, y}, the action
induced by a call of that edge preserves the product measure u ( C ) of any
set of the form
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With/) running from 0 to 1, these equations describe a set of codimension
1 in the simplex &. For legal edge processes (b = t = 0) we have necessarily
p = 0, or a = d = 0 and cp = (1 — p) g. Thus the processes with non-trivial
stationary product measures in Fig. 2 form the upper triangular face CGE,
without edges CE and GE. In Fig. 3 there are no such processes. For spin
systems (a = t = e = 0) we get b( 1 — p) = dp and cp = g( 1 — p) which yields
a surface in the tetrahedron BCDG.

The parameter p can be eliminated as follows.

Corollary 5.3. There is a stationary product measure if and only if

Proof. First suppose (5 .1) is true. It follows that

The parameter u, w, z in Proposition 5.1 fulfil w2 = 4uz which yields (5.3).
Next, we suppose (5.3) is true and derive (5.2). If ab + bc + ct >0, the

last equations lead us to define p by p / ( 1 — p) = ^/z/u = (bg +gt+ td)/
(ab + bc + ct)>0 which by (5.3) implies (1 -p)/p = (cd + da + a g ) / ( a b +
bc + c t ) > 0 . Inserting this into (5.2), equality is easily verified.

If ab + bc + ct = 0, there are 3 cases. b = t = 0 implies (5.2) with p = 0.
Similarly, a = c = 0 implies (5.2) with p=1 . Finally, b = c = 0 and a, t>0
reduces (5.2) to t(1 — p)2 = up2 which holds for a unique p e (0, 1). |
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